POLITECHNIKA ŚWIĘTOKRZYSKA

Wydział Elektrotechniki, Automatyki i Informatyki Katedra Elektrotechniki Przemysłowej i Automatyki

Sterowniki PLC

Symulator języka LAD

plcfiddle.com (wersja robocza)

Paweł Strączyński

2020

1 PLCfiddle - symulator języka LAD online

PLCfiddle to symulator języka drabinkowego (LAD) służący do nauki i testowania programów. Symulator zawiera wszystkie bloki funkcjonalne języka LAD: styki, cewki, bloki timerów, liczniki itd. zgodnie z normą IEC61131. PLCfiddle jest symulatorem dostępnym online (działa w przeglądarce internetowej) pod adresem plcfiddle.com Główny ekran symulatora widocz-

Playground Code School	PLC Fiddle	Log In
Boolean Add	Contacts Coils Math Compare Time/Count Other Variable ▼ Variable ▼ Variable ▼ Variable ▼	
X Stop Button OFF	Start Button Stop Button Motor Motor	
Interested in advertising on	PLC Fiddle? <u>Contact us</u> to get your name in front of thousands of controls engineers!	

Rysunek 1.1: Ekran główny plcfiddle.com

ny po jego uruchomieniu przedstawiono na rysunku 1.1. Ekran składa się z trzech głównych obszarów:

- edytora zmiennych,
- panelu narzędziowego z komponentami języka LAD,
- obszaru programu w języku LAD.

Domyślnie symulator uruchamia się z przykładową symulacją układu sterowania rozruchem silnika.

W lewej części ekranu widoczne są zmienne - binarne, liczbowe, oraz typu strukturalnego powiązane z blokami timerów i liczników. Użytkownik ma możliwość dodania nowej zmiennej podając jej nazwę w polu tekstowym, wybierając typ zmiennej oraz klikając przycisk Add.

Rysunek 1.2: Edytor zmiennych

Przykład dodania nowej zmiennej przedstawiono na rysunku 2.4. Edytor zmiennych składa się z:

- 1. pola edycyjnego w którym podaje się nazwę nowej zmiennej,
- 2. menu wyboru typu nowej zmiennej,
- przeglądarki zmiennych dodanych w programie (umożliwiającej forsowanie zmiennych oraz usuwanie),
- 4. przycisku dodawania nowej zmiennej.

Górna część ekranu zwiera panel narzędziowy z elementami języka LAD. Panel podzielony został na kategorie:

- contacts podstawowe styki NO, NC,
- coils cewki,
- compare podstawowe instrukcje porównania,
- time/count timery i liczniki,
- other pozostałe elementy języka, nowe linie połączenia, koszt służący do usuwania elementów z program.

2 Programy przykładowe

Przykład 1 Układ sterowania oświetleniem. Wciśnięcie przycisku P1 powoduje zapalenie lampy L1. Po zwolnieniu przycisku lampa powinna świecić przez 5 sekund.

Timer T	Contacts Coils Math Compare	Time/Count Other	
X P1 OFF	Variable *	Variable 🔻	Variable v
() L1 OFF			
(X) timer1 ▲ EN OFF	P1 •		Off Delay Timer timer1 •
TT OFF	timer1.Q •		O
Q OFF			
ACC 5.153			
PRE 5			

Rysunek 2.1: Program przykładowy 1

Styk P1 wyzwala timer typu TOFF który został powiązany ze zmienna timer1. Do pola PRE zmiennej strukturalnej został wpisany czas 5 sekund. Wyjście timera timer1.Q wyzwala cewkę L1.

Pojawienie się negatywnego zbocza na wejściu timera TOFF powoduje jego wyzwolenie. Wyjście Q zostanie skasowane po czasie równym PRE - rysunek 2.2. Pole ACC zawiera aktualny czas jaki timer odlicza.

Rysunek 2.2: Przebiegi czasowe - przykład 1

Na rysunku 2.3 przedstawiono analogiczny program dla sterownika S7-1200 napisany przy użyciu oprogramowania TIAPortal.

Rysunek 2.3: Program przykładowy 1 - TIA portal

Przykład 2 Generator fali prostokątnej o okresie 2 sekundy.

Add	Contacts Coils Math Compare Time/Count Other
boolean •	On Delay Timer Off Delay Timer Retentive Timer Count Up Count Down Reset
(X) WŁĄCZ ON	
(X) timer1 ▲	
EN ON	WŁĄCZ •
TT OFF	
Q OFF	
ACC 0	timer1.Q •
PRE 2	
(X) czas 1	
GENERATOR ON	
	I

Rysunek 2.4: Program przykładowy 2

Po załączeniu styku WLACZ timer zaczyna odliczać czas równy 2 sekundy. Po upływie 1 sekundy na skutek instrukcji porównania wyzwolone zostanie wyjście *GENERATOR*. Po upływie czasu 2 sekund zostaje ustawione wyjście *timer1.Q* które powoduje zresetowanie timera - odliczanie zaczyna się od nowa do póki styk WLACZ pozostaje zwarty.