Program przykładowy 1 (regulacja temperatury) - Lab_reg

Wykorzystywane komponenty sprzętowe:

- 1. Zestaw uruchomieniowy z mikrokontrolerem Connected Lunchpad EK-TM4C1294XL
- 2. Podstawka przyłączeniowa wpinana w złącze BoosterPack 1
- 3. Płytka z układem regulacji temperatury
- 4. Wyświetlacz graficzny TFT ST7735

Instrukcja połączeń:

- 1. Połączyć podstawkę z płytka regulatora temperatury według opisów na płytkach PCB.
- 2. Połączyć wyświetlacz z mikrokontrolerem według schemat z tabeli poniżej:

Mikrokontroler	Wyświetlacz		
PD2 (SSIFss)	CS		
PD1 (SSIXDat0)	DIN		
PD3 (SSI2Clk)	CLK		
PN2 (GPIO)	D/C		
PN3 (GPIO)	RST		
3V3	VCC		
3V3	BL		
GND	GND		

Opis działania:

Program realizuje prosty układ regulacji temperatury z regulatorem typu P. Układ regulacji składa się z grzałki w postaci rezystora 470hm 5W oraz wentylatora. Jako czujnik temperatury wykorzystywany jest cyfrowy czujnik temperatury MCP9803 komunikujący się z mikrokontrolerem z wykorzystaniem magistrali I2C. Na wyświetlaczu graficznym zaimplementowano prosty interfejs komunikacji z użytkownikiem. Do przemieszczania po MENU służą przyciski użytkownika znajdujące się w zestawie uruchomieniowym. Interfejs umożliwia regulację temperatury zadanej w zakresie 20-60 stopni Celsjusza. Umożliwia również wpływać na nastawę regulatora Kp w zakresie 1-9. Nastawione wartości oraz aktualna temperatura są prezentowane na wyświetlaczu.

Zadania:

- 1. Zmodyfikować program aby do pomiaru temperatury zamiast czujnika MCP9803 wykorzystywany był termistor NTC (wyprowadzenie PE3 mikrokontrolera) znajdujący się na płytyce – wykorzystać przetwornik analogowo-cyfrowy.
- 2. Wykorzystując wyprowadzenie oznaczone na schemacie jako enkoder rozbudować program o pomiar prędkości obrotowej wentylatora. Na rysunku poniżej przedstawiono przebieg sygnału generowany na wyjściu tego wyprowadzenia. Zbudować układ regulacji prędkości obrotowej

					Sa	leae Logic 1.2.5	Beta - [Connect	ed] - [16 MHz
	Start	* *	300 ms	+10 ms	+20 ms	+30 ms	+40 ms	+50 ms
00 :::::	Channel 0	\$ +F				II ₩ 3.053 ms	167.2 Hz 🔽 5	.98 ms

3. Zastąpić regulator proporcjonalny trójstanowym i porównać ich działanie. Dodać całkowanie do regulatora (PI)

Program przykładowy 2 (sterowanie silnikiem krokowym – freeRTOS) - Lab_freeRTOS

Wykorzystywane komponenty sprzętowe:

- 1. Zestaw uruchomieniowy z mikrokontrolerem Connected Lunchpad EK-TM4C1294XL
- 2. Wyświetlacz graficzny TFT ST7735
- 3. Silnik krokowy unipolarny ze sterownikiem

Instrukcja połączeń:

1. Połączyć sterownik silnika krokowego z mikrokontrolerem według tabeli niżej.

Mikrokontroler	Sterownik silnika	Wyprowadzenie silnika
5V	+	
GND	-	COM
PE0	IN1	A1
PE1	IN3	A2
PM4	IN2	B1
PM5	IN4	B2

2. Połączyć wyświetlacz z mikrokontrolerem według schemat z tabeli poniżej.

Mikrokontroler	Wyświetlacz	
PD2 (SSIFss)	CS	
PD1 (SSIXDat0)	DIN	
PD3 (SSI2Clk)	CLK	
PN2 (GPIO)	D/C	
PN3 (GPIO)	RST	
3V3	VCC	
3V3	BL	
GND	GND	

<u>Opis działania:</u>

Program stanowi proste wykorzystanie systemu freeRTOS. Program składa się z dwóch zadań – pierwsze steruje pracą silnika krokowego drugi zaś zajmuje się zliczaniem obrotów silnika i wy-świetleniem zliczonej wartości na wyświetlaczu.

Zadania:

- 1. Rozbudować program o możliwość sterowania pracą silnika (zmiana kierunku, prędkości obrotowej) przy pomocy przycisków.
- 2. Dodać możliwość sterowani silnikiem z wykorzystaniem komend przesyłanych przez UART z komputera PC. Do zatrzymywania i wznawiania pracy silnika wykorzystać funkcje vTaskSuspend oraz vTaskResume.

Program przykładowy 3 (klawiatura matrycowa + silnik DC) - Lab1

Wykorzystywane komponenty sprzętowe:

- 1. Zestaw uruchomieniowy z mikrokontrolerem Connected Lunchpad EK-TM4C1294XL
- 2. Podstawka przyłączeniowa wpinana w złącze BoosterPack 1
- 3. Płytka interfejsu użytkownika (z wyświetlaczem siedimiosegmetowym)
- 4. Płytka obsługi silnika prądu stałego

Instrukcja połączeń:

- 1. Połączyć podstawkę z płytka interfejsu użytkownika według opisów na płytkach PCB.
- 1. Połączyć podstawkę z płytka silnika prądu stałego według opisów na płytkach PCB.

<u>Opis działania:</u>

Program po wciśnięciu klawisza na klawiaturze przesyła przez UART komunikat o tym który klawisz wciśnięto. Ponadto za pomocą klawiatury można sterować pracą silnika według tabeli poniżej. Dodatkowo przez UART wysyłany jest komunikat o wartości odczytanej z przetwornika ADC wykorzystywanego do pomiaru prądu silnika.

Przycisk	Działanie
*	Praca silnika w lewo
#	Praca silnika w prawo
0	Stop silnika
А	Prędkość silnika 1 – PWM=25%
В	Prędkość silnika 2 – PWM=50%
С	Prędkość silnika 3 – PWM=75%
D	Prędkość silnika 4 – PWM=100%

Parametry transmisji szeregowej: 115200-8-N-1

Zadania:

- 1. Wyświetlać wprowadzane klawiaturą dane na wyświetlaczu siedmiosegmentowym.
- 2. Zrealizować zamek szyfrowy z wykorzystaniem klawiatury. Poprawnie wprowadzony kod zapala diodę LED.
- 3. Dokonać skalowania wartości odczytanej z ADC na odpowiadającą jej wartość prądu.